base station. An automatic gain control (AGC) can be supplied to control the gain of the final stages of the receiver. The signals may be forwarded from there to a remote telephone which may be another cellular telephone, any other mobile phone or a land-line connected to a Public Switched Telephone Network (PSTN), or other telephony networks. [0107] Voice signals transmitted to the mobile terminal 1701 are received via antenna 1717 and immediately amplified by a low noise amplifier (LNA) 1737. A down-converter 1739 lowers the carrier frequency while the demodulator 1741 strips away the RF leaving only a digital bit stream. The signal then goes through the equalizer 1725 and is processed by the DSP 1705. A Digital to Analog Converter (DAC) 1743 converts the signal and the resulting output is transmitted to the user through the speaker 1745, all under control of a Main Control Unit (MCU) 1703 which can be implemented as a Central Processing Unit (CPU). [0108] The MCU 1703 receives various signals including input signals from the keyboard 1747. The keyboard 1747 and/or the MCU 1703 in combination with other user input components (e.g., the microphone 1711) comprise a user interface circuitry for managing user input. The MCU 1703 runs a user interface software to facilitate user control of at least some functions of the mobile terminal 1701 to process contextual information of at least one device and/or at least one other device, to activate one or more functions at the at least one other device upon deactivating the at least one device. The MCU 1703 also delivers a display command and a switch command to the display 1707 and to the speech output switching controller, respectively. Further, the MCU 1703 exchanges information with the DSP 1705 and can access an optionally incorporated SIM card 1749 and a memory 1751. In addition, the MCU 1703 executes various control functions required of the terminal. The DSP 1705 may, depending upon the implementation, perform any of a variety of conventional digital processing functions on the voice signals. Additionally, DSP 1705 determines the background noise level of the local environment from the signals detected by microphone 1711 and sets the gain of microphone 1711 to a level selected to compensate for the natural tendency of the user of the mobile terminal 1701. [0109] The CODEC 1713 includes the ADC 1723 and DAC 1743. The memory 1751 stores various data including call incoming tone data and is capable of storing other data including music data received via, e.g., the global Internet. The software module could reside in RAM memory, flash memory, registers, or any other form of writable storage medium known in the art. The memory device 1751 may be, but not limited to, a single memory, CD, DVD, ROM, RAM, EEPROM, optical storage, magnetic disk storage, flash memory storage, or any other non-volatile storage medium capable of storing digital data. [0110] An optionally incorporated SIM card 1749 carries, for instance, important information, such as the cellular phone number, the carrier supplying service, subscription details, and security information. The SIM card 1749 serves primarily to identify the mobile terminal 1701 on a radio network. The card 1749 also contains a memory for storing a personal telephone number registry, text messages, and user specific mobile terminal settings. [0111] Further, one or more camera sensors 1753 may be incorporated onto the mobile station 1701 wherein the one or more camera sensors may be placed at one or more locations on the mobile station. Generally, the camera sensors may be utilized to capture, record, and cause to store one or more still and/or moving images (e.g., videos, movies, etc.) which also may comprise audio recordings. [0112] While the invention has been described in connection with a number of embodiments and implementations, the invention is not so limited but covers various obvious modifications and equivalent arrangements, which fall within the purview of the appended claims. Although features of the invention are expressed in certain combinations among the claims, it is contemplated that these features can be arranged in any combination and order. - 1. A method comprising facilitating a processing of and/or processing (1) data and/or (2) information and/or (3) at least one signal, the (1) data and/or (2) information and/or (3) at least one signal based, at least in part, on the following: - at least one determination of contextual information for at least one first device and at least one second device; - a processing of the contextual information to determine one or more functions to deactivate the at least one first device; - an activation of the one or more functions at the at least one second device: - a transfer of the one or more functions from the at least one first device to the at least one second device; and - a deactivation of the one or more functions at the at least one first device. - 2. A method of claim 1, wherein the (1) data and/or (2) information and/or (3) at least one signal are further based, at least in part, on the following: - a presentation of at least one user interface at the at least one first device for controlling the one or more functions transferred to the at least one second device. - 3. A method of claim 1, wherein the (1) data and/or (2) information and/or (3) at least one signal are further based, at least in part, on the following: - an establishment of a wireless connection between at least one first device and the at least one second device, - wherein the controlling of the one or more functions is performed over the wireless connection. - **4.** A method of claim **1**, wherein the (1) data and/or (2) information and/or (3) at least one signal are further based, at least in part, on the following: - a synchronization of data between at least one first device and at least one second device; and - a triggering of one or more functions based, at least in part, on the activation command from the at least one first device. - **5.** A method of claim **1**, wherein the (1) data and/or (2) information and/or (3) at least one signal are further based, at least in part, on the following: - at least one determination of at least one first device as a primary device based, at least in part, on device capability information, resource availability information, user configuration, or a combination thereof. - **6**. A method of claim **1**, wherein contextual information includes battery level information, proximity information, user configuration, temporal information, Subscriber Identity Module (SIM) information, status information, or a combination thereof. - 7. A method of claim 1, wherein the (1) data and/or (2) information and/or (3) at least one signal are further based, at least in part, on the following: